
PUBLIC

Dr.-Ing. Ismail Oukid (SAP)

January 21, 2019

Leveraging Modern Hardware in SAP HANA
Present and Future

2PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Present

▪ Single Instruction Multiple Data (SIMD)

▪ Hardware Transactional Memory (HTM)

▪ Non-Volatile Memory (NVM)

Future

▪ Graphic-Processing Units (GPUs)

▪ Field-Programmable Gate Arrays (FPGAs)

▪ Software-Defined Memory Coherency

Agenda

SIMD Single Instruction Multiple Data

4PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Scalar processing

− traditional mode

−one instruction produces

one result

SIMD processing

−with Intel® SSE, AVX

−one instruction produces

multiple results

X4

Y4

X4opY4

SOURCE

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

DEST

SIMD OP

0127

X

Y

XopY

SOURCE

DEST

Scalar OP

4

Single Instruction Multiple Data (SIMD)

5PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

42227021772

DECOMPRESS

32 bits

F E D C B A 9 8 7 6 5 4 3 2 1 0

42... 2270217726553698300

17 bits

Use-Case: Pack Integers in Bit-Fields

Example: Packed 17-bit fields

Integers in the range [0, 100000] need only 17 bits

Idea: Store only 17 bits (saving 15 bits per value)

6PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

F E D C B A 9 8 7 6 5 4 3 2 1 0

42...

1. Load a 128-bit segment of input data into SSE register

3. Shift values to align them to 32-bit boundary

4. Store uncompressed values

22702177265536110300

42227021772

42227021772

_mm_shuffle_epi8

6

2. Shuffle compressed values to target “32-bit segment”

Decompress Unaligned Bit Fields (Example: Packed 17-Bit Fields)

7PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ
7

F E D C B A 9 8 7 6 5 4 3 2 1 0

42...

1. Load a 128-bit segment of input data into SSE register

3. Parallel compare to shifted search range

22702177265536110300

42227021772
_mm_shuffle_epi8

2. Shuffle compressed values to target “32-bit segment”

00 01

2702270227022702
_mm_shuffle_epi8

4. Store result of search as bit-vector

Search Unaligned Bit Fields (Example: Packed 17-Bit Fields)

8PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Full-table Scan is 1.63x faster with SSE

Full-Table Scan on Intel® Xeon™ Processor X5560

0.00

0.50

1.00

1.50

2.00

2.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 avg

Bit case

s
p

e
e

d
-u

p
 S

S
E

 v
s

.
s

c
a

la
r

c
o

d
e

Source: Willhalm et al. SIMD-scan: ultra fast in-memory table scan using on-chip vector processing units. PVLDB 2009

9PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Multiply to

shift left

F E D C B A 9 8 7 6 5 4 3 2 1 0

32766 27 4 42

0-bits shift7-bits shift6-bits shift5-bits shift

__m128i mult_msk = _mm_set_epi32(0x04,0x02,0x01,0x80);

__m128i mult_rslt = _mm_mullo_epi32(shfl_rslt, mult_msk);

_mm_srli_epi32(mult_rslt1_m128i, 7);

__

32766 27 4 42

7-bits shift 7-bits shift 7-bits shift 7-bits shift

32766 27 4 42

Shift right

1/21/2019 9

Solution: Use multiplication for shifting

Hint: How do you implement a fast multiplication by “2”?

Problem: No “vector-vector shift” in SSE

10PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Unpacking of Bit-Fields with Intel® AVX2

Double the number of data elements vs. Intel® SSE

Implementation takes advantage of new variable shift

Pseudo Code SSE 4.1 AVX2

vector load v

from input array

movdqu

x8(%r10,%rcx,1),%xmm6

vmovdqu xmm8, xmmword ptr[rax+rcx*1+0x11]

vinserti128 ymm9, ymm8, xmmword ptr

[rax+rcx*1+0x19], 0x01

byte shuffle v pshufb %xmm1,%xmm6 vpshufb ymm10, ymm9, ymm1

vector shift v pmulld %xmm2,%xmm6

psrld $0xe,%xmm6

vpsrlvd ymm11, ymm10, ymm0

vector and v pand %xmm0,%xmm6 vpand ymm12, ymm11, ymm2

vector store v

in output array

movdqa %xmm6,0x10(%r8) vmovdqu ymmword ptr [r8+0x20], ymm12

New variable

shift instruction

11PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Intel® AVX2 Unpacking - Performance

Source: Willhalm et al. Vectorizing Database Column Scans with Complex Predicates. ADMS@VLDB 2014.

0

0,5

1

1,5

2

2,5

3

3,5

4

0 5 10 15 20 25 30

d
e

c
o

d
e

d
 i
n

te
g

e
rs

/c
y
c

le

Bit-Case #

Intel AVX2 Intel SSE 4.1

Bit-field unpacking runs up to 1.6x faster on average with Intel ® AVX2

12PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Intel® Advanced Vector Extensions 512

Expands register size to 512 bits

New mask registers:

▪ Results of comparisons

▪ Masking operations

New instructions:

▪ vpcompressd – extract selected DWORDs

▪ Scatter – distribute values

13PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Using Mask Registers for Predication

• Instructions operate only on

selected elements

• Enables vectorization of

“branchy” code, e.g.

processing of NULL values

if (v5<v6) {v1 += v3;}

v5 = 0 4 7 8 3 9 2 0 6 3 8 9 4 5 0 1

v6 = 9 4 8 2 0 9 4 5 5 3 4 6 9 1 3 0

vpcmpd k7, k0, zmm5, zmm6, 0x6

k7 = 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0

v3 = 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8

v1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

vaddpd v1, k7, v1, v3

v1 = 6 1 8 1 1 1 8 9 1 1 1 1 6 1 8 1

HTM Hardware Transactional Memory

15PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Locks are blocking like traffic lights

Serialize execution only when necessary

Picture idea from Dave Boutcher

16PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Transactionally execute lock-protected critical sections

Execute without acquiring lock

▪ Expose hidden concurrency

Hardware manages transactional updates – All or None

▪ Other threads can’t observe intermediate transactional updates

▪ If lock elision cannot succeed, restart execution & acquire lock

Intel® Transactional Synchronization Extensions

17PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Intel® Transactional Synchronization Extensions

No Serialization and no communication if no data conflicts

Lock: Free

Hash Table

Thread 1 Thread 2

Acquire
Acquire

A

Critical

section

B

Critical

section

Release

Release

Lock remains free

throughout

Transactions keep

read and write

sets in L1 cache

18PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Intel TSX provides significant gains with no application changes

▪ Outperforms RW lock on read-only queries

▪ Significant gains with increasing inserts (6x for 50%)

Initial Analysis: B+Tree

0

2

4

6

8

10

0 20 40 60 80 100

re
la

ti
ve

 s
p

e
e

d
u

p

insert operations (%)

No Concurrency Control

Spin Lock Elision w/ TSX

RW Lock

Spin Lock

Source: HPCA 2014: Improving In-Memory Database Index Performance with

Intel® Transactional Synchronization Extensions. Tomas Karnagel et al.

19PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Source: http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/sap-hana-real-time-analytics-solution-brief.pdf

Up to 2x Performance Boost in OLTP When Running SAP HANA with TSX

Disclaimer: Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address
exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

20PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Analysis: TSX Aborts in Delta Storage Index

Capacity Aborts

▪ Algorithmic level

– Node/Leaf Search Scan

– Causes random lookups

▪ Cache Associativity Limits

– Aborts typically before cache size limits

– Hyper-threads share the L1 cache

▪ Dictionary contributes to larger footprint

Data Conflicts

▪ Single dictionary

▪ Global memory allocator

Analysis leading to improvements in future HW generations

Source: Karnagel et al. Improving In-Memory Database Index Performance with

Intel® Transactional Synchronization Extensions. In HPCA 2014.

NVM Non-Volatile Memory

22PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Non-Volatile Memory

21 23 25 27 29 211 213 215 217 219 221 223

DRAM NVM Flash Hard Drive
LL Cache

EDRAM

L1 Cache

SRAM

Main Memory High Performance Disk

Access Latency in Cycles for a 4 GHz Processor [1]

[1] Qureshi et al. “Phase change memory: From devices to systems”. Synthesis Lectures of Computer Science, 2011.

NVM is a merging point between memory and storage

NVM writes slower than reads Limited write endurance

23PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Non-Volatile Memory

23

Scale-up systems are constrained by the scalability limits of DRAM

 NVM as potential remedy

Opportunities:

• Increased scalability

o Larger memory modules means more

memory available per server

• Significant cost savings

o NVM will be cheaper than DRAM

• Improved recovery times

Challenges:

• Higher (than DRAM) latency

impacting performance

• New technology, standards still

evolving…

o Means slow, phased implementation

with increased complexity and uncertain

timelines

24PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

• HANA is architected as a twin store

• A large, read-only main part

• A smaller, mutable delta part that is

periodically merged into the main part

• Current NVM adoption in SAP HANA

 The main part is persisted in and directly

accessed from NVM

• Pros:

 Faster restart time

 Reduced TCO

 Larger main memory

 Write latency and endurance do not

matter, only read latency does

• Cons:

 Performance penalty due to the higher

latency of NVM

Non-Volatile Memory Adoption in SAP HANA

Delta

(~5%)
Main (~95%)periodic

merge

25PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Leveraging Intel DC PM for SAP HANA: Performance analysis

25

Promising results from a prototype using HW emulation:

• Significant improvements in restart time  >100x improvement measured

• Acceptable performance impact of higher latencies (0-15%)

Source: Mihnea et al. SAP HANA Adoption of Non-Volatile Memory. VLDB 2017.

Recovery Time OLAP Workload

26PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Why is Restart Time Important?

Logging, warehousing, processing information:
lifeline of companies

Information availability depends on database
availability (9’s)

Minimize restart time to improve database
availability

Availability Annual Downtime

97% 11 days

98% 7 days

99% 3 days 15 hrs

99.9% 8 hrs 48 min

99.99% 53 min

99.999% 5 min

99.9999% 32 sec

• Each restart for an IMDB can take up to 1 hour to load TBs of data to memory.

• Dell study shows millions of dollars lost per hour due to downtime**

• Existing HA solutions increase the price exponentially for every nine

**http://tanejagroup.com/files/Compellent_TG_Opinion_5_Nines_Sept_20121.pdf

27PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

World‘s first Intel Persistent Memory Demo

at Sapphire 2017

28PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Next step: Mutable data structures on NVM

29PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

• Database developers are used to:

• Ordering operations at the logical level (e.g.,

write undo log, then update primary data)

• Fully controlling when data is made persistent

(e.g., log durability must precede data

durability)

• NVM invalidates these assumptions:

• Little control over when data is made persistent

• Writes need to be ordered at the system level

• New failure scenarios

NVM Programming Challenges

NVM Controller

NVM Device

CPU

Core Core

L3

L1

L2

L1

L2

Store Buffer Store Buffer

MOV MOVNT

Transient

Persistent

How to persist data in NVM?

30PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Example: Array Append Operation

void push_back(int val){
m_array[m_size] = val;
sfence();
clwb(&m_array[m_size]);
sfence();
m_size++;
sfence();
clwb(&m_size);
sfence();

}

m_size m_array

What is in NVM?

void push_back(int val){
TXBEGIN {

m_array[m_size] = val;
m_size++;

} TXEND
}

Pros:

- Easy to use and to reason about

Cons:

- Overhead due to systematic logging

- Low-level optimizations not possible

Pros:

- Low-level optimizations possible

Cons:

- Programmer must reason about

the application state

 Harder to use and error prone

à la software

transactional memory

31PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

NVM Performance Implications

Sequential memory access

patterns hardly affected

Random memory access

patterns significantly affected

Need to keep DRAM next to NVM

1

2

3

4

5

50 150 250 350 450 550 650 750

Sl
o

w
d

o
w

n
 v

s.
 D

R
A

M

SCM Latency [nanosecond]

B+-Tree Insert B+-Tree Find Column Scan

32PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

NVM-Based Data Structures: State-of-the-Art

Literature focuses mostly on tree-based data structures

 Failure-atomic updates

 Reduce NVM writes

CDDS-Tree

(FAST‘11)

NV-Tree

(FAST‘15)

wB-Tree

(VLDB‘15)
FPTree

(SIGMOD‘16)

HiKV

(ATC‘17)

Literature timeline

WORT

(FAST‘17)

BzTree

(VLDB‘18)

33PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

FPTree Design Goals

1. Selective Persistence 2. Unsorted Leaves

3. Fingerprinting
4. Selective
Concurrency

FPTree

➢ Persistence

➢ Near DRAM-Performance

➢ High scalability

➢ Fast Recovery

NV-Tree NV-Tree, wBTree

Source: Oukid et al. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for Storage-Class Memory. In SIGMOD 2016.

34PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

1. Selective Persistence

2 5 7

6 73 4 51 2

L5L4L3

Persistent (NVM)

L2L1 L7L6

Volatile (DRAM)
Inner nodes in

DRAM for better

performance

Leaves in NVM to

ensure durability

Inner nodes rebuilt from leaves upon recovery in O(#entries)

Recovery is up to 100x faster than a full rebuild

35PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

2. Unsorted Leaves

3 4 7 14

a b c
7 14 12

1

0

e f g h

Bitmap

Sorted leaf Unsorted leaf

3 4 7 14

a b c
5 14 12 10

d f g h

3 4 5 7 14

a d b c

5 14 12
1

0

d f g h4 4 5 7 14

a d b c

Failure-atomic
Potential

corruption !

Many writes !

Counter

2.

3.

4.

1. 1.

2.

3.

Failure-atomicity + fewer writes

But…linear search instead of binary search

36PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

3. Fingerprinting

Fingerprints act as a filter to limit the number of key probes

A fingerprint is a 1-byte hash of a key

37PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

3. Fingerprinting

Expected number of probed keys is one for leaf sizes up to 64

Linear search

Binary search

Fingerprinting

38PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Hardware Transactional Memory (HTM)

1

2

XBEGIN

XEND

Critical

section

Time Thread 1 Thread 2

1

2

L1 Cache

XBEGIN

XEND

Critical

section

HTM and NVM are apparently incompatible

Transactions keep read and

write sets in L1 cache

FLUSH  Abort!

39PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Persistent – Fine-grained locking

Transient – Hardware Transactional Memory

4. Selective Concurrency

2 5 7

6 73 4 51 2

L5L4 L7L6L4L1 L2 L3

40PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

4. Selective Concurrency: Insertion

Selective Concurrency solves the incompatibility of HTM and NVM

Persistent

Transient

1 3 4

42 31

L4L3L2L1

XBEGIN XEND

1. Find and

lock leaf

2. Modify

leaf

3. Update

parents

XBEGINXEND

4. Unlock

leaf

FLUSH

41PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

The FPTree is competitive with a Transient B+-Tree

Only ~3% of data in DRAM

0

1

2

3

4

5

6

50 250 450 650

ti
m

e/
o

p
 [

µ
s]

SCM Latency

Find Performance

0

2

4

6

8

50 250 450 650

SCM Latency

Insert Performance

FPTree

NVTree

wBTree

Transient

2.2x

6.5x

10.6x

2.6x

4.9x

10.1x

FPTree Performance Evaluation: Single-Threaded

42PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

The FPTree scales nearly linearly

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16

Sp
ee

d
u

p

Threads

FPTree Concurrency Performance

Find
Mixed
Insert
Update
Delete
Ideal

13.5x

FPTree Performance Evaluation: Multi-Threaded

GPU Graphic Processing Unit

44PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Nvidia V100 (2017) IBM ASCI White (2000)

Number of Processor Cores 3584 8192 (512 nodes x 16 IBM Power3)

Double-Precision Performance 7.5 TeraFLOPS 7.2 TeraFLOPS

NVIDIA NVLink™ v2 Interconnect Bandwidth 2x150 GB/s N/A

PCIe x16 Interconnect Bandwidth 2x16 GB/s N/A

Memory Capacity 16 GB
6 TB DRAM

(Power 3 with up to 16 MB L2 cache)

Max. overall data transfer speed 900 GB/s ?

Weight 450 gramm 106 tons

Energy consumption 300W 3 MW

https://www.nvidia.com/en-us/data-center/tesla-v100/ https://www.top500.org/featured/systems/asci-white-lawrence-livermore-national-laboratory/

Slide by: Dr. Norman MayGPUs: The New Supercomputers

45PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

GPUs and DBMSs: A Story of Negative Research Results

Why past attempts failed? (2007) What has changed? (2018)

Memory

• < 1GB of memory too small for

DBMS workload

• Allocation: host vs. device memory

• 16 GB of memory maybe enough for hot

tables

• Memory allocation unchanged

Bandwidth

CPU  GPU

• Good Bandwidth to GDRAM, but

• PCIe v2 with 2x0.5 GB/s per lane

as bottleneck

• PCIe v4 with 2x1.9 GB/s per lane still too

slow

• Nvidia NVLink v2 with up to 2x150 GB/s!

Programming

Model

• Hard to debug and profile

• Improved tool support, e.g.

debugging and profiling

• Matured libraries

Slide by: Dr. Norman May

Need to revisit negative GPU research results

46PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Query Engine

▪ GPU memory still tiny

▪ Research not promising:

– Significant programming effort

– Code duplication for relatively
small gain

– OLTP on the GPU?

– Most DBMS code not GPU-friendly

▪ But promising examples in streaming
and analytic scenarios,
e.g. MapD, Kinetica.

Geospatial Processing

▪ Classical expensive UDFs, often
natural mapping to GPU operations

▪ Geo-Clustering

▪ Typically Graphical User Interfaces

Query Processing on GPUs

https://devportal.yaas.io/services/earthobservationanalysis/latest/

Slide by: Dr. Norman May

47PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Beyond Query Processing

Cardinality Estimation

▪ Small data that rarely change, e.g. samples, sketches, histograms

▪ Asynchronous processing often acceptable

▪ Some methods are very compute intensive and GPU-friendly, e.g.

Maximum Entropy, Kernel Density Models

Machine Learning Extension in the DBMS Kernel

▪ HANA has Machine Learning / Data Mining capabilities built in

– Predictive Analytics Library (Clustering, etc.)

– Tensor-Flow Integration

Source: http://dl.acm.org/citation.cfm?id=2749438

Slide by: Dr. Norman May

GPU application domain is expanding

48PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Source: Felipe Aramburu (Blazing DB) & Nikolay Sakharnykh (Nvidia). Breaking the Speed of Interconnect
with Compression for Database Applications. http://on-demand-gtc.gputechconf.com/gtc-quicklink/2VMqF

TPC-H l_orderkey compression rates with NVCOMP:

- RLE + Byte-packing = 3.2x

- RLE + Delta + RLE + Byte-packing = 10.6x 2x faster data load

- TPC-H Q4 and Q21 ~10x and ~6x faster on GPU than on CPU (details in presentation video)

Pipelined Compression

http://on-demand-gtc.gputechconf.com/gtc-quicklink/2VMqF

FPGA Field-Programmable Gate Array

50PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Storage

▪ FPGA on SSD

▪ e.g., Samsung‘s KV SSD:
https://www.samsung.com/semiconductor/gl

obal.semi.static/Samsung_Key_Value_SSD_

enables_High_Performance_Scaling-0.pdf

▪ FPGA as storage node*

▪ FPGA as memory node*

*FPGAs may have ARM cores

Networking

▪ FPGA on NIC

▪ NIC on FPGA

▪ FPGA on Network Switch

FPGA as Coprocessor

▪ On-chip

▪ Connected via PCIe

▪ Connected via UPI

▪ Connected via Network

Broad Architecture Possibilities

Major Roadblock: Programmability

https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf

51PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

String Compression on FPGA

▪ HANA uses extensively compression

▪ Goal: either accelerate or improve the

compression ratio without loss in speed

String Predicate Evaluation on FPGA

▪ Create a configurable select engine that is

faster than a plain CPU implementation

▪ 80% of SAP HANA columns contain strings

 Focus on string operators e.g. SQL LIKE

Our Pathfinding Efforts so Far Using OpenCL

Three ways an FPGA as coprocessor can be beneficial

▪ Accelerate an existing workload

▪ Offload operations to FPGA to relieve CPU resources without loss in performance

▪ Given a time budget, do something better than the CPU, e.g. better compression ratio

FPGAs have huge potential, but compelling use cases are hard to find

52PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

The Good

▪ The Compiler (Quartus) gives useful warnings (although misses important ones)

▪ Compilation reports help identify bottlenecks

▪ Intel / Altera are very responsive to our feedback

The Bad

▪ Data has to be packed and streamed chunk by chunk to the FPGA

▪ Clear separation between host and device code

▪ Limited streaming capabilities (pipes not adequate)

▪ Limited debugging possibilities on the device (mainly printf)

▪ Obscure language semantics (e.g. how to organize load/store units, etc.)

▪ No definitive how-to guide. Knowledge only acquired through (a lot of) experience.

Hardware Limitations

▪ Host must actively transport data to device, thereby consuming CPU resources

▪ Not possible to create more than one pipe per direction

The Intel / Altera OpenCL Experience

53PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

➢ Unified host-device virtual memory

➢ Direct, zero-copy access to host memory from the FPGA with NUMA-like latencies

➢ Software-tunable hardware prefetching from host to FPGA

➢ Programming language with device code similar to host code (e.g. CUDA, SYCL?)

➢ Tool supportability, industry-wide standardization, compiler maturity

Desired Properties

SDMC Software-Defined Memory Coherency

55PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Motivation

Source: Tudor et al. Everything you always wanted to know about synchronization but were afraid to ask. SOSP‘13

Atomic Instructions Do Not Scale

56PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Why is CC so Expensive?

Figure by Tiemo Bang

Example: HPE UV300

- Cache-coherent domain is huge (4-32 sockets

and up to 48 TB DRAM)

- Increased memory latencies due to snooping

- Atomic instructions prohibitively expensive at the

slightest contention

HW always tracks coherency state

• Not always necessary, e.g. read-only

HW enforces coherency on cache line basis

• HW efficiently handles CC for cache lines, but

size of “piece” of data varies

57PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Key Idea: Split the System Into Smaller Cache-Coherent Domains

HW-Coherent Domain 1

Socket 1 Socket 2

Socket 3 Socket 4

HW-Coherent Domain 2

Fabric-Attached Memory

Interconnect

Socket 5 Socket 6

Socket 7 Socket 8

Domain granularity is tunable

- HW manages coherency within a domain, SW manages coherency across domains

- No or partial hardware coherency across domains expected latency improvement

Scale up system with scale out semantics

58PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Prototype based on HPE Superdome Flex*

HPE announced a prototype for Software-Defined

Scalable Memory based on Superflex Dome

*https://h20195.www2.hpe.com/v2/gethtml.aspx?docname=a00026242enw

https://www.nextplatform.com/2018/06/21/hpe-boots-up-sandbox-of-the-

machine-for-early-users/

A step towards “real” memory-centric computing

with fabric-attached memory (FAM)

59PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

• Pool of media modules (DRAM, NVM, GPU, FPGA, etc.) and SoCs

• Remote resources exposed/accessible as local resources

Gen-Z – Towards Software-Composable Hardware

Fancy Switch/Interconnect (aka the missing piece)

DRAM
FPGA CPU

GPU SoC

Controller

NVM

Controller

NVM

Controller

DRAM

Controller

60PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

❖ SIMD and HTM

 Well established technologies with proven benefits. Still evolving, thereby unlocking novel use cases.

❖ Non-Volatile Memory

 Programming model and toolchain available (PMDK)

 Hardware availability is imminent!

❖ GPUs

 Need to revisit negative results in light of new hardware advancements

 GPU application domain is expanding

❖ FPGAs

 Programmability is a major issue, OpenCL toolchain not mature

 The potential is huge: Smart NICs & Storage, encryption, compression, QP, storage/memory node, etc.

❖ Software-Defined Memory Coherency

 A merging point between scale-up and scale-out systems

 The first step towards software-composable hardware

Conclusion

Contact information:

Dr.-Ing. Ismail Oukid

Ismail.Oukid@sap.com

Thank you.

We are hiring!
- Full-time positions

- Student jobs (master/bachelor theses,

internships, working student)

Email us at: students-hana@sap.com

mailto:Ismail.Oukid@sap.com
mailto:students-hana@sap.com

64PUBLIC© 2018 SAP SE or an SAP affiliate company. All rights reserved. ǀ

SAP BW Enhanced Mixed Load (BW-EML) Standard Application Benchmark with a total of 1,000,000,000 records. Dell PowerEdge R930, 4 processors / 72 cores / 144 threads,
Intel Xeon Processor E7-8890 v3, 2.50 GHz, 64 KB L1 cache and 256 KB L2 cache per core, 45 MB L3 cache per processor, 1536 GB main memory . Certification #: 2015015
http://global.sap.com/solutions/benchmark/pdf/Cert15015.pdf

SAP BW Enhanced Mixed Load (BW-EML) Standard Application Benchmark with a total of 1,000,000,000 records. HP DL580 G7, 4 processor / 40 cores / 80 threads, Intel Xeon
Processor E7-4870, 2.40 GHz, 64 KB L1 cache and 256 KB L2 cache per core, 30 MB L3 cache per processor, 512 GB main memory. Certification #: 2013027
http://global.sap.com/solutions/benchmark/pdf/Cert13027.pdf

SAP BW Advanced Mixed Load (BW-AML) Standard Application Benchmark, 2B initial records. Fujitsu PRIMERGY RX4770 M3, 4 processors / 96 cores / 192 threads, Intel Xeon
Processor E7-8890 v4, 2.20 GHz, 64 KB L1 cache and 256 KB L2 cache per core, 60 MB L3 cache per processor, 1024 GB main memory. Certification #: 2017012
https://www.sap.com/documents/2017/06/8e11832a-c27c-0010-82c7-eda71af511fa.html

SAP BW Advanced Mixed Load (BW-AML) Standard Application Benchmark, 2B initial records. Fujitsu PRIMERGY RX4770 M2, 4 processors / 72 cores / 144 threads, Intel Xeon
Processor E7-8890 v3, 2.50 GHz, 64 KB L1 cache and 256 KB L2 cache per core, 45 MB L3 cache per processor, 1536 GB main memory. Certification #: 2016049
http://global.sap.com/solutions/benchmark/pdf/Cert16040.pdf

SAP* BW edition for SAP HANA* Standard Application Benchmark* @ 1.3 billion (1.3B) initial records result published at http://global.sap.com/solutions/benchmark as of 11 July
2017 Huawei FusionServer RH5885H V3, 4 processor / 96 cores / 192 threads, Intel Xeon Processor E7-8890 v4, 2.20 GHz, 64 KB L1 cache and 256 KB L2 cache per core, 60 MB
L3 cache per processor, 2048 GB main memory. Certification #: 2017004
https://www.sap.com/documents/2017/02/ac8d3332-a77c-0010-82c7-eda71af511fa.html

SAP* BW edition for SAP HANA* Standard Application Benchmark* @ 1.3 billion (1.3B) initial records result published at http://global.sap.com/solutions/benchmark as of 11 July
2017. 4x Intel® Xeon® Platinum 8180 processor (112 cores/224 threads) on HPE CS500 (DL560 Gen10) with 3072 GB total memory on SUSE* Linux Enterprise Server 12 using
SAP HANA 1.0, SAP NetWeaver 7.50. Benchmark: SAP BW for SAP HANA @ 1.3B initial records, Source: Certification #: 2017025:
http://www.sap.com/solution/benchmark/appbm/netweaver.sap-bw-edition-for-sap-hana-standard-application.html.

* Benchmark Details

http://global.sap.com/solutions/benchmark/pdf/Cert15015.pdf
http://global.sap.com/solutions/benchmark/pdf/Cert13027.pdf
https://www.sap.com/documents/2017/06/8e11832a-c27c-0010-82c7-eda71af511fa.html
http://global.sap.com/solutions/benchmark/pdf/Cert16040.pdf
http://global.sap.com/solutions/benchmark
https://www.sap.com/documents/2017/02/ac8d3332-a77c-0010-82c7-eda71af511fa.html
http://global.sap.com/solutions/benchmark
http://www.sap.com/solution/benchmark/appbm/netweaver.sap-bw-edition-for-sap-hana-standard-application.html

